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SUMMARY

A numerical method is presented for solving the variable coe�cient Poisson equation on a two-
dimensional domain in the presence of irregular interfaces across which both the variable coe�cients
and the solution itself may be discontinuous. The approach involves using piecewise cubic splines to
represent the irregular interface, and applying this representation to calculate the volume and area of
each cut cell. The �uxes across the cut-cell faces and the interface faces are evaluated using a second-
order accurate scheme. The deferred correction approach is used, resulting in a computational stencil
for the discretized Poisson equation on an irregular (complex) domain that is identical to that obtained
on a regular (simple) domain. In consequence, a highly e�cient multigrid solver based on the additive
correction multigrid (ACM) method can be applied to solve the current discretized equation system.
Several test cases (for which exact solutions to the variable coe�cient Poisson equation with and with-
out jump conditions are known) have been used to evaluate the new methodology for discretization on
an irregular domain. The numerical solutions show that the new algorithm is second-order accurate as
claimed, even in the presence of jump conditions across an interface. Copyright ? 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Many �ow simulations involve complex geometries with curved and planar boundaries which
are not aligned with the grid line orientation. In a Cartesian coordinate system, such bound-
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aries are generally approximated as a series of staircase steps (viz., the arbitrary curved
boundary is approximated by a domain whose boundary is de�ned by a set of boundary
edges lying on the grid lines). Unless a very �ne grid is used, the predicted results adja-
cent to these (complex) boundaries will be inaccurate. To overcome this problem, various
investigators have proposed using other types of grids in order to provide a more accu-
rate resolution of the boundaries corresponding to complex geometries, which have included
overlapping orthogonal grids (Chimera grids), curvilinear boundary-�tted grids and unstruc-
tured grids. While these approaches simplify the implementation of boundary conditions,
each introduces additional di�culties such as extra terms in the governing equations, ex-
tra interpolation, large computational stencils, and problems associated with the transfer of
information across grid interfaces. This added complexity makes code development more
di�cult and increases computation time. Discussion of these techniques can be found in
Reference [1].
As an alternative approach, the cut-cell method has become increasingly popular in recent

years. This method uses a Cartesian grid for all cells except those which are intersected by the
complex boundary. These boundary cells (or cut cells) are truncated so that they conform to
the shape of the (curved) boundary surfaces. In this way, the advantage of using a conventional
Cartesian grid method is retained for the interior cells and a more elaborate treatment is only
required for the boundary cells. For example, Udaykumar et al. [2, 3] have described their
‘ELAFINT’ method for solving two-dimensional incompressible �uid �ow problems in the
presence of irregular stationary and moving boundaries.
Other Cartesian-grid-based methods with application to complex geometries include the

immersed boundary method (IBM) [4], the immersed interface method (IIM) [5], the embed-
ded boundary method (EBM) [6] and the ghost �uid method (GFM) [7]. IBM represents the
body boundary in the �ow �eld through a forcing term (or a feedback function) that is added
to the momentum equations. These forcing terms are evaluated initially at the discrete surface
points, and satisfy the no-slip boundary conditions on the surface. Subsequently, a �rst-order
cosine function, which can be interpreted as a discrete �-function, is used to interpolate and
extrapolate information between the immersed boundary and the background grid. The use of
the cosine-function formulation smears out the solutions over a thin �nite band centred on
the boundary, which in general could have an adverse e�ect on the solution accuracy. More-
over, IBM may induce spurious oscillations and consequently restrict the computational time
step, especially when an explicit time-integration method is used in the �ow solver. To over-
come this di�culty, other IBM variants, such as the ghost-cell immersed boundary method
(GCIBM) [8], have been proposed. In contrast to IBM, GCIBM uses ghost cells within the
solid objects as boundary conditions without having to explicitly introduce a forcing term into
the momentum equation. The ghost cells are reconstructed using either linear or quadratic in-
terpolation of property values at the surrounding �uid nodes in the physical domain and at a
boundary node.
IBM and its variants described above frequently do not allow the continuity or disconti-

nuity of the solution to be properly imposed along the boundary curve. In other words, the
numerical solution is continuous along the boundary even when the actual physical bound-
ary conditions imply that the solution should be discontinuous, such as for free surface
problems (e.g. open channel �ows, �ows around ships, etc.). Ideally, a physically discon-
tinuous boundary should be represented as a numerically discontinuous boundary in order
to ensure consistency between the physical problem and the numerical solution. To this
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purpose, IIM [5] is designed to maintain the appropriate jump conditions along a boundary
curve where the solution is discontinuous, in contrast to the numerical smearing introduced by
the �-function formulation of IBM. However, to maintain the required jump conditions along
a boundary curve, IIM incorporates these boundary conditions into the computational stencil
associated with the �nite-di�erence discretization of the governing equations in a rather com-
plicated manner. Unfortunately, this results in a rather complex algorithm with the result that
this algorithm has only been extended to three dimensions for the simple case of a stationary
boundary [9] (viz., the method has not yet been extended to treat the more complex case of
a three-dimensional moving boundary).
EBM is a second-order accurate method for solving the Poisson equation on irregular two-

dimensional domains. In this approach, the irregular boundary in the two-dimensional domain
is described using a series of piecewise linear segments. This piecewise linear approximation
of the boundary is reminiscent of how the interface front is reconstructed in the volume-of-
�uid (VOF) method [10]. The key assumption in EBM is that the solution can be extended
smoothly outside the physical domain into a �ctitious domain. Similar to the cut-cell methods,
�uxes on partial cells (including the interface �ux) require special attention. For example, a
�ux on a partial cell is evaluated based on a linear interpolation between adjacent �uxes,
involving nodal values in both the physical and �ctitious domains. In contrast, the interface
�ux is obtained by using a quadratic polynomial based on the surrounding nodal values in the
physical domain only. In their application of EBM, Johansen and Colella [6] only considered
Dirichlet boundary conditions and did not extend the method to treat jump conditions at an
interface.
GFM has been used to solve the variable coe�cient Poisson equation in the presence of an

interface with jump conditions [11]. GFM uses a ghost cell and assumes that the solution can
be smoothly extended beyond the interface to the ghost cell. By carefully constructing ghost
cells implicitly satisfying jump conditions on both sides of the interface, the order of accuracy
for a �rst-order derivative discretized with a stencil consisting of the interface is greatly
improved. However, Liu et al. [11] show that GFM is only �rst-order accurate when treating
problems with jump conditions. Recently, higher-order accuracy has been obtained with GFM
[12] for solution of the variable coe�cient Poisson equation without jump conditions. In the
study of Lui et al. [11], it should be mentioned that only Dirichlet boundary conditions on
the irregular interface were considered.
In this paper, we present a novel second-order accurate cut-cell method based on a �nite

volume discretization for solving the variable coe�cient Poisson equation in the presence of
irregular interfaces where both the variable coe�cient and the solution itself may be discon-
tinuous. The irregular interfaces are represented through marker points. Since our �nal goal is
to develop a second-order accurate cut-cell method capable of solving two-�uid free-surface
�ow problems, the marker points in this study are connected by a piecewise cubic interpolant
(or cubic spline), rather than a piecewise linear interpolant (e.g. Reference [6]), so that the
curvature of a free surface and, hence, the associated surface tension can be accurately rep-
resented [13]. The same interpolant is used to compute the volume, area and the unit normal
on each midpoint of the interface for each cut cell. The boundary conditions in the present
cut-cell approach are imposed directly on the boundaries in order to avoid interpolation errors
associated with jump conditions as when GFM is used. To maintain second-order numerical
accuracy, gradient �uxes through all the faces, including those on the cut cells, have to be
evaluated at the face centroids.
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Instead of using a polynomial interpolating function to evaluate the �uxes [6], the cor-
rections in our proposed method are chosen to ensure that the computational stencil in the
implicit part of discretized Poisson equation is the same for both regular and irregular cells.
This is clearly advantageous in the sense that we can now apply directly (and, without any
modi�cation) computationally e�cient iterative methods that have been developed previously
to solve Poisson’s equation on regular domains to our current problem. To accomplish this,
the cell centroid gradient of the solution in the correction formulation is evaluated using
the least-squares technique [14]. The corrections of the gradient �uxes of the solution on the
Cartesian faces and the �ux at the midpoint of the boundary for each cut-cell are incorporated
into a source term (the so-called deferred correction approach). This allows the discretized
form of the Poisson equation over an irregular domain to have the same form as that obtained
over a regular domain. The additive correction multigrid (ACM) method [15, 16] is applied to
solve the resulting set of equations arising from the discretization of the Poisson equation over
the irregular domain. The advantage of this multigrid method is that the discretized equation
on the coarser level can be obtained directly from the associated equation on the �ner level
without a reconstruction of the irregular boundaries on the coarser level. This advantage is
particularly useful for the cut-cell method because we do not have to estimate the volume
and cell face areas for the cut-cells at the coarser resolution.
This organization of the paper is as follows. In Section 2, we describe our proposed method-

ology for constructing an e�cient second-order accurate cut-cell method for solving the vari-
able coe�cient Poisson equation with jump conditions on an irregular domain in detail. This
includes descriptions of the representation of the irregular interface, the calculation of the
volume and area of the cut cell, and implementation of our proposed second-order accurate
discretization for the Poisson equation on the cut cells. Furthermore, ACM is described brie�y
in Section 2 as well. In Section 3, we present six di�erent numerical test cases of our method-
ology for the Poisson equation with and without the jump conditions applied on the irregular
domain in order to demonstrate the accuracy of our discretization scheme. Finally, Section 4
contains our conclusions.

2. NUMERICAL METHODS

2.1. Interface representation

The Cartesian grid method is depicted in Figure 1. Since the interface between the two phases
can be arbitrary and the Cartesian grid does not have to conform to the interface, the irregular
interface is represented using an ordered list of marker points (xi; yi), 16i6N , where N is the
number of markers. A list of connected polynomials fi(s), 26i6N , (f can be the coordinate
functions x or y) is constructed using the marker points. This gives a parametric representation
of the irregular interface, with the parameter s being the arc length along the interface curve.
The arc length along the interface curve from the reference location (s=0) to the ith marker
point can be approximated as

si=
i−1∑
j=1
[(xj+1 − xj)2 + (yj+1 − yj)2]1=2 (1)
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Marker points

s=0

interface

xi(s)

Phase 1

Phase 2 

Figure 1. Schematic of a Cartesian grid and the irregular interface representation.

It is assumed that the phase 1 region always lies on the left side, and the phase 2 region
lies on the right side when one traverses the interface curve in the clockwise direction, as
illustrated in Figure 1.
We use a piecewise cubic interpolant (or cubic spline) [17] to provide a smooth and

e�cient approximation for the interface curve. In particular, on each interval of the interface
curve between marker points some piecewise cubic polynomial fi(s) is chosen so that it
agrees with the values of the coordinate functions (x(s) or y(s)) at the marker points de�ning
the interval and is continuous and has a continuous �rst derivative on the interval. If it is
assumed that the second derivative of the ith cubic polynomial piece fi(s) (26i6N ) is linear,
we can write

f′′
i (s)=f

′′(si)
si+1 − s
si+1 − si + f

′′(si+1)
s− si
si+1 − si (2)

in which f′′ at each marker location can be obtained by solving the following set of linear
algebraic equations:

�i−1
6
f′′(si−1) +

(�i−1 + �i)
6

f′′(si) +
�i

3
f′′(si+1)

=
f(si+1)− f(si)

�i
− f(si)− f(si−1)

�i−1
(3)

where �i ≡ (si+1 − si) for 26i6N . For i=1 or N , continuity of f′ is not applicable, so
Equation (3) represents only N −2 equations for the N unknown second derivatives, and two
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further equations are needed. These must be based on assumptions or approximations applied
at the endpoints. For example, for a periodic curve, we can set

f′′(s1)=f′′(sN−1); f′′(sN )=f′′(s2) (4)

to get two additional equations.
The resulting piecewise cubic polynomial equation can then be rewritten as

fi(s)= afs3 + bfs2 + cfs+ df (5)

where

af =
f′′(si+1)− f′′(si)

6�i

bf =
si+1f′′(si)− sif′′(si+1)

2�i

cf =
f(si+1)− f(si)

�i
+
�i[f′′(si)− f′′(si+1)]

6
+
[s2i f

′′(si+1)− s2i+1f′′(si)]
2�i

df =
si+1f(si)− sif(si+1)

�i
+
�i[sif′′(si+1)− si+1f′′(si)]

6

+
s3i+1f

′′(si)− s3i f′′(si+1)
6�i

(6)

To compute the volume and surface areas of the Cartesian control volumes which are
required for the discretization of the Poisson equation with the �nite volume method, the
coordinates of the intersection points between the irregular interface and the Cartesian grids
have to be determined �rst. Let us denote by �+ the volume of the Cartesian cell that lies
within the phase 1 region. In consequence, �+ equals �x�y for Cartesian cells that lie
completely within the phase 1 region, where �x and �y are the grid spacings in the x and
y directions, respectively. �+ equals 0 for those cells that lie completely outside the phase
1 region. The remaining problem is to determine appropriate values of �+ for those cells
that have one or more Cartesian faces that intersect the interface (i.e. cut cells). Once the
volume �+ is known, the volume of a cell in the phase 2 region, denoted �−, is simply
�x�y − �+. Similarly, let us denote by l+ the (surface) area of a Cartesian cell face that
lies within the phase 1 region. In view of this, l+ equals �x or �y for a Cartesian cell
face that lies completely within the phase 1 region, and 0 for a cell face that lies completely
outside the phase 1 region. Furthermore, an appropriate value of the area l+ for a cell face
that intersects the interface curve will need to be determined. Once the area l+ is known, the
area of a Cartesian cell face in the phase 2 region, denoted l−, is simply �x (or �y)− l+.
With the piecewise cubic polynomial equation of (5), the coordinates of the intersection

points of the interface curve with the cell faces can be computed using a combination of
the bisection and Newton–Raphson methods [17]. The computation of the volume can be
reduced to the computation of a circulation along the cut lines between the Cartesian cell and
the interface curve, as shown in Figure 2. If P and Q are two (arbitrary) functions of the
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Figure 2. Computation of the volume fraction in a cut cell.

coordinates (x; y) and if we apply Stokes’ theorem to the phase 1 region, we can write∮
S+
P dx +Q dy=

∫
V+

(
@Q
@x

− @P
@y

)
dx dy (7)

where S+ is a simple closed curve enclosing domain V+ of the plane in the phase 1 region.
Now, if we choose P=0 and Q= x, then∮

S+
x dy=

∫
V+
dx dy=�+ (8)

Using Equation (8) and referring to Figure 2, the line integral on the left-hand side can be
written as ∮

S+
x dy=

∫ 2

1
x dy +

∫ 3

2
x dy +

∫ 4

3
x dy +

∫ 5

4
x dy +

∫ 1

5
x dy (9)

The line integrals along the horizontal and vertical lines (i.e. 34, 45, 51) can be simply
computed based on the coordinates of the end points of each line. The other integrals along
the interface curve (i.e. 12, 23) can be computed with the constructed cubic polynomials
described by Equation (5). To this purpose, note that the cubic polynomials for the x and y
coordinate functions can be expressed explicitly as

x(s)= axs3 + bxs2 + cxs+ dx; y(s)= ays3 + bys2 + cys+ dy (10)

Then, the contribution of the piecewise interface curve 12 to the line integral is given by∫ y2

y1
x(s) dy(s)=

∫ s2

s1
x(s)y′(s) ds= I(s2)− I(s1) (11)
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where

I(s) = 1
2axays

6 + 1
5(3bxay + 2axby)s

5 + 1
4(axcy + 2bxby + 3cxay)s

4

+ 1
3(bxcy + 2cxby + 3dxay)s

3 + 1
2(cxcy + 2dxby)s

2 + dxcys (12)

Here, ax, ay, bx, by, cx, cy, dx and dy are de�ned as in Equation (6). The line integral
along the piecewise curve 23 can be obtained similarly as in Equation (11). The sum of line
integrals along each segment then gives us the volume of the Cartesian cut-cell that lies within
the phase 1 region. The corresponding volume in the phase 2 region is then given simply by
�−=(�x�y −�+).
In terms of the de�nition, the four areas of the faces of the cut-cell in the phase 1 region

(see Figure 2) can be obtained as

l+e =�y34; l+w =�y51; l+n =�x; l+s =0 (13)

where l+e , l
+
w, l

+
n and l

+
s are the areas of the east, west, north and south faces of the cut-cell

in the phase 1 region, respectively; �y34, and �y51 are the length of the line segments 34
and 51. The corresponding four areas of the faces of the same cut-cell in the phase 2 region
are then

l−e =�y −�y34 =�y73; l−w =�y −�y51 =�y16; l−n = 0; l−s =�x (14)

To compute the interface area l+
13
of the cut-cell, we divide the curve 13 into two line segments

12 and 23 (viz., 13=12 ∪ 23). From the coordinates of the intersection points 1, 3 between
the cell face and the interface curve and the marker point 2, we can compute the interface
area l+

13
as l+

13
= l+

12
+ l+

23
, which is also equal to the interface area l−

13
in the phase 2 region.

Based on the de�nition, the coordinates of the centroid (x+c , y
+
c ) of each cut-cell in the

phase 1 region can be written in

x+c =

∫
V+ x dx dy∫
V+ dx dy

; y+c =

∫
V+ y dx dy∫
V+ dx dy

(15)

where V+ is the volume of the Cartesian cell in the phase 1 region. For the evaluation of the
cell centroid in Equation (15), it is useful to apply Stokes’ theorem with Q= 1

2x
2, P=0 for

computation of x+c , and P= − 1
2y

2, Q=0 for computation of y+c , so

x+c =

∮
S+

1
2x
2 dy∮

S+ x dy
; y+c = −

∮
S+

1
2y

2 dx∮
S+ x dy

(16)

The surface integral in Equation (16) is along the curve 123451. The coordinates of the
centroid (x−

c , y
−
c ) of each cut-cell in the phase 2 region can be computed with Equation (16)

as well, but the surface integral is now along the curve 673216.
Based on the polynomial representation of the interface curve, the normal direction of any

point on the curve can be evaluated using the following analytical formula:

nx=
−y′(s)√

x′(s)2 + y′(s)2
; ny=

x′(s)√
x′(s)2 + y′(s)2

(17)
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Interface Γ

Phase 1

Phase 2

Ω+

Ω−
 

Figure 3. A two-dimensional computational domain includes two phases
that are divided by an irregular interface.

where nx and ny are the x and y components of the unit normal vector to the interface curve.
The normal direction points from the phase 2 region towards the phase 1 region, as shown
in Figure 2.

2.2. Numerical discretization

Consider a two-dimensional Cartesian computational domain, �, with the exterior boundary,
@�, and a one-dimensional irregular interface �, that divides the computational domain into
two adjacent subdomains, �+ and �−, as shown in Figure 3. The variable coe�cient Poisson
equation can be written as

∇ · (�(x; y)∇�(x; y))=f(x; y) (18)

where ∇ ≡ (@=@x; @=@y) is the gradient operator, and �(x; y) is assumed continuous in each
subdomain, �+ and �−, but may be discontinuous across the interface �. On @�, either
Dirichlet boundary conditions (�(x; y)= g(x; y)) or Neumann boundary conditions (�n(x; y)=
h(x; y)) can be speci�ed. Here, �n ≡ ∇� · n and n is the unit normal vector to the interface.
The jump conditions across the interface are speci�ed by

[�]� =�+� − �−
� =A(x; y) (19)

and

[��n]� =�+� (∇� · n)+� − �−
� (∇� · n)−� =B(x; y) (20)

where the superscripts +, − refer to the phase 1 and phase 2 property values, respectively.
Hence, �+� is the value of the variable � adjacent to the interface on the phase 1 side, and
�−
� is the value of the variable � adjacent to the interface on the phase 2 side.
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Figure 4. Discretization of the Poisson equation in the phase 1 region in the irregular grid system.

Applying Stokes’ theorem, the integral form of the Poisson equation (18) can be
expressed as ∮

S
�∇� · n ds=

∫
V
f dV (21)

where V is the control domain, S is the control surface, and n is the unit normal direction
to the control surface S. Equation (21) applies to both phases. For sake of brevity, only
the discretization of the Poisson equation in the phase 1 region will be described in detail
below (the discretization in the phase 2 region can be obtained in an analogous manner).
In the irregular Cartesian grid system (i.e. Cartesian grid over an irregular domain) shown
in Figure 4, the Poisson equation (21) can be discretized as follows (on using the midpoint
rule):

Fe − Fw + Fn − Fs − F+b =
∫
V+
f dV (22)

where Fe, Fw, Fn and Fs are the gradient �uxes of � through the east, west, north and south
faces, respectively, and F+b is the gradient �ux of � through the piece (section) cd of the
interface curve that intersects the cell P in the phase 1 region. It should be noted that the
gradient �ux F−

b of � through the same piece of the interface cd in the phase 2 region can
be di�erent from F+b due to the jump condition of Equation (20) across the interface. The
evaluation of F+b and F

−
b will be addressed later in this section.

To achieve second-order accuracy in the discretization, we will use the values at the aux-
iliary nodes P′ and E′ to approximate the gradient �ux of � on the east face (i.e. Fe). As
shown in Figure 5, P′ lies at the intersection of the normal to the east (or west) face through
the east face midpoint e′ and the normal to the north (or south) face through cell centroid P
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Figure 5. Approximation of the gradient �ux Fe of � using two
property values at the auxiliary nodes P′ and E′.

(with a similar de�nition for E′). Hence, the gradient �ux Fe of � can be expressed as

Fe =�e′
�E′ − �P′

xE′ − xP′
�ye (23)

It should be noted that �ye in Equation (23) is the area on the east face of the cut cell,
not the grid spacing in this case. Furthermore, �e′ corresponds to the value of the variable
coe�cient function �(x; y) evaluated at the midpoint e′ of the east face.
The values of � at the auxiliary nodes P′ and E′ are evaluated based on the gradient of �

at the cell centroids P and E, that is

�P′ =�P +
(
@�
@y

)
P
(yP′ − yP) (24)

and

�E′ =�E +
(
@�
@y

)
E
(yE′ − yE) (25)

Substituting Equations (24) and (25) into the expression for the gradient �ux Fe of
Equation (23), we obtain

Fe =�e′
(
�E − �P
xE − xP

)
�ye +

�e′�ye
xE − xP

[(
@�
@y

)
E
(ye′ − yE)−

(
@�
@y

)
P
(ye′ − yP)

]
(26)

In derivation of Equation (26), we used the fact that xE′ = xE , xP′ = xP and ye′ =yE′ =yP′ .
Other gradient �uxes through the west, north and south faces can be evaluated similarly to
Equation (26). To ensure that the coe�cients of the discretized Poisson equation for the
cut-cell here are the same as those for a regular cell, we will incorporate the second term
of Equation (26) into the source term. The gradient �ux of � through the interface cd,
F+b [≡ (�(@�=@n))+b lcd], is also incorporated into the source term. In so doing, the discretized
Poisson equation on an irregular Cartesian grid system has the same form as the corresponding
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equation on a regular Cartesian grid system; viz.,

AE�E + AW�W + AN�N + AS�S + AP�P=RHS (27)

where

AW =
�w′�yw
xP − xW

AE =
�e′�ye
xE − xP

AN =
�n′�xn
yN − yP

AS =
�s′�xs
yP − yS

AP =−(AW + AE + AN + AS)

(28)

The RHS (source) term in Equation (27) is given by

RHS=− �e′�ye
xE − xP

[(
@�
@y

)
E
(ye′ − yE)−

(
@�
@y

)
P
(ye′ − yP)

]

+
�w′�yw
xP − xW

[(
@�
@y

)
P
(yw′ − yP)−

(
@�
@y

)
W
(yw′ − yW )

]

− �n′�xn
yN − yP

[(
@�
@x

)
N
(xn′ − xN )−

(
@�
@x

)
P
(xn′ − xP)

]

+
�s′�xs
yP − yS

[(
@�
@x

)
P
(xs′ − xP)−

(
@�
@x

)
S
(xs′ − xS)

]

+F+b +
∫
V
f dV (29)

To approximate the contribution of Equation (29) to the source term in the discretized
Poisson equation, we have to evaluate the gradient of � at each control volume centroid.
There are two common techniques for evaluating cell property gradients: namely, using a
Green–Gauss theorem [18] or applying a least-squares approach [14]. In this study, we choose
the least-squares approach for the reason that it is exact for a linear pro�le, whereas some
e�ort is needed to make the Green–Gauss method exact for the same pro�le.
To understand how the least-squares algorithm works, consider a cut-cell P and its set

of immediate neighbours �P, as illustrated in Figure 6. It should be noted that the interface
face must also be considered as a neighbour. Therefore, there are three di�erent kinds of
cut-cells which include four, three and �ve neighbours as shown in Figures 6(a), (b) and (c),
respectively. The change in value of � between an immediate neighbour cell j and central
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Figure 6. Least-squares stencil used in calculating cell gradient vectors of �.

cell P is given by �j − �P, j∈ �P. If the cell gradient (∇�)P of � at P is exact, then this
di�erence is also

�j − �P=(∇�)P · (rj − rP) (30)

where rj − rP is the vector from cell P to cell j. But unless the solution � is linear, the
cell gradient cannot be exact, for cell P has more neighbours than the gradient vector has
components. The least-squares gradient is that which minimizes the cost function given by

E=
∑
j∈�P

wj[(∇�)P · (rj − rP)− (�j − �P)]2 (31)

where wj are the weights. We choose wj=1=|rj − rP|2, which places greater weight on neigh-
bours nearer P in the stencil.
The solution to this least-squares problem requires the solution of the following matrix

equation: [∑
wj�xj�xj

∑
wj�xj�yj∑

wj�xj�yj
∑
wj�yj�yj

] [
�x

�y

]
=

[∑
wj�xj��j∑
wj�yj��j

]
(32)

where

�xj ≡ xj − xP
�yj ≡ yj − yP
��j ≡�j − �P

and �x and �y are the components of the cell gradient (∇�)P of � at P.
In the phase 2 region, the discretized variable coe�cient Poisson equation is the same

as that in the phase 1 region (i.e. Equations (27)–(29)), but with a di�erent coe�cient
�(x; y) and source f(x; y). The jump conditions of Equations (19) and (20) also need
be discretized to couple solutions in the two regions. The discretization of Equation (20)
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Figure 7. Calculating the gradient �ux Fb at a boundary face.

requires the discretization of (∇� · n)+ and (∇� · n)−, which are also needed to evaluate F+b
(≡�+b (∇� ·n)+b lcd) in Equation (29). Here, we use the same approach as that used to evaluate
the gradient �ux of � through an internal cell face (i.e. Equation (26)), except for the fact
that we now need to use a one-sided approximation. As shown in Figure 7, the gradient �ux
of �, F+b , in the phase 1 region can be approximated by

F+b =�
+
b (∇� · n)+b lcd=�+b

�P+′ − �+b
|rP+′ − rb| lcd (33)

where the subscript P+′ denotes the intersection point between the line running through the
midpoint b of the interface along normal vector direction n and the line running through the
centroid P+ perpendicular to the normal vector direction n in the phase 1 region. In terms
of the gradient of � at the cell centroid P+, the value at the auxiliary point P+′ can be
expressed as

�P+′ =�P+ + (∇�)P+ · (rP+′ − rP+) (34)

Substituting Equation (34) into Equation (33), we then obtain

F+b =�
+
b

[
�P+ − �+b
|rP+′ − rb| + (∇�)P

+ · (rP+′ − rP+)
|rP+′ − rb|

]
lcd (35)

Similarly, with reference to Figure 7, the gradient �ux of � through the interface cd; F−
b ,

in the phase 2 region can be evaluated to give

F−
b = − �−

b

[
�P− − �−

b

|rP−′ − rb| + (∇�)P− · (rP−′ − rP−)
|rP−′ − rb|

]
lcd (36)

where the subscripts P−′ and P− in the phase 2 region have de�nitions similar to those of
P+′ and P+ in the phase 1 region. With the jump conditions of Equations (19) and (20), i.e.

�+b − �−
b =A(x; y) (37)
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F+b − F−
b =B(x; y)lcd (38)

where F+b , F
−
b are obtained from Equations (35) and (36), we can solve Equations (37)

and (38) to obtain

�+b =
�+b ((�P+=dr

+) + C+) + �−
b (((A(x; y) + �p−)=dr−) + C−)− B(x; y)

(�+b =dr+) + (�
−
b =dr−)

(39)

�−
b =�

+
b − A(x; y) (40)

where

dr+ ≡ |rP+′ − rb| (41)

dr− ≡ |rP−′ − rb| (42)

C+ ≡ (∇�)P+ · (rP+′ − rP+)
dr+

(43)

C− ≡ (∇�)P− · (rP−′ − rP−)
dr−

(44)

2.3. Additive correction multigrid

The discretized Poisson equation (27) can be written in the form

L(�)=RHS (45)

where L is a linear operator. The linear system can be solved using an iterative method. In
the present study, the discretized Poisson equation (27) is solved using the additive correction
multigrid (ACM) [15] method. The main advantage of this method is that the coe�cient matrix
of the Poisson equation on the coarser level can be directly derived from the corresponding
coe�cient matrix on the �ner level. This method is often used in an unstructured grid system.
We apply the ACM method using a classical ‘V-cycle’ on the correction form of the linear
system: namely,

L(�+ ��)=RHS⇔ L(��)=R with R=RHS− L(�) (46)

With this method, the form of the coe�cient matrix on the coarser level in the irregular
Cartesian grid system is the same as that in the regular Cartesian grid system. For the grid
hierarchy, the coarse grid spacing in each direction is twice that of the �ne grid spacing.
As shown in Figure 8, P is a cell on the coarser level, and f1, f2, f3 and f4 are the

four cells on the next �ner level, which lie in the coarser cell P. Hence, the coe�cient matrix
on the coarser cell P can be derived as

AP��P + AE��E + AW��W + AN��N + AS��S =RHS (47)
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P

f1 f2

f3
f4

Figure 8. Construction of the coe�cient matrix of the Poisson equation on the coarser grid level.

where

AE = (AE)f2 + (AE)f4

AW = (AW )f1 + (AW )f3

AN = (AN )f1 + (AN )f2

AS = (AS)f3 + (AS)f4

AP = (AP)f1 + (AP)f2 + (AP)f3 + (AP)f4

+ (AE)f3 + (AW )f4 + (AN )f4 + (AS)f2

+ (AW )f2 + (AE)f1 + (AS)f1 + (AN )f3

RHS=
4∑
i=1
[RHS− (AP��P + AE��E + AW��W + AN��N + AS��S)]fi

(48)

The values of � in Equation (45) on the �nest grid level are �rst approximated by per-
forming a few iterations with the pointwise Gauss–Seidel method (resulting in a smooth error
or residual at this grid level). The residual is then calculated on the �nest grid and transferred
to the next coarser level using simple averaging as the restriction operation, so

Rl=
4∑
i=1
(Rl+1)i (49)

where the summation is over the four cells (i.e. daughter cells) at the �ner level into which
the coarser level has been divided (see Figure 8). The correction �� to the solution in
Equation (47) at the coarser level is then approximated by performing a few iterations with
the pointwise Gauss–Seidel method. This procedure is then applied recursively down to the
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coarsest level. The correction �� to the solution on the coarsest grid level is then transferred
back to the four daughter cells on the next �ner grid level (prolongation operation). After
performing a few iterations at this level, the correction to the solution on this level is trans-
ferred to the next �ner level until the �nest level is �nally reached. The whole V-cycle is
repeated until the residual on the �nest level has been reduced to some desired (small) level.
In the following, we generally stop the V-cycle iterations when the maximum �nal residual

is smaller than 10−10 of the maximum initial residual. We apply four iterations of the Gauss–
Seidel method at each grid level, except at the coarsest level. On the coarsest grid level, we
apply 10 iterations of the Gauss–Seidel method.

3. NUMERICAL RESULTS

To evaluate the numerical accuracy of the proposed method, we de�ne the volume-weighted
norm of a variable e as

‖e‖p=
[∑

i |ei|pVi∑
i Vi

]1=P
(50)

where
∑

i denotes a summation over all the cells in the solution domain. Note that the
L∞-norm for e, ‖e‖∞, is simply the maximum absolute value of e over all the cells in the
solution domain. We can now de�ne the rate of convergence between two norms, e1 and e2,
of the solution obtained on two di�erent grid spacings h1 and h2, as

rp=
log(‖e1‖p=‖e2‖p)
log(h1=h2)

(51)

In view of Equation (51), a value of rp= n then indicates that the underlying solution method-
ology possesses an nth order of accuracy.

3.1. Test case 1

The �rst test case considers the solution of the following Poisson equation without jump
conditions:

∇2�=7r2 cos 3� (52)

with a domain of de�nition in the plane consisting of the region inside a unit square and
outside a circle of radius r=0:215 with centre at (0:5; 0:5). In this case, we only consider
the solution of the Poisson equation in the phase 1 region. Dirichlet boundary conditions are
imposed on all the boundaries of the domain, including the interior circular boundary. For
this test case, these boundary conditions are speci�ed using the exact solution

�(r; �)= r4 cos 3� (53)

Figure 9 shows the contour plot of the numerical solution � obtained on a 128×128 uniform
grid.
To estimate the order of accuracy of our proposed solution methodology, we will solve this

problem over the computational domain shown in Figure 9 for a series of uniform grids with

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:723–748



740 H. JI, F.-S. LIEN AND E. YEE

0.25 0.5 0.75 1
X

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

Figure 9. A contour plot of the numerical solution � obtained on a 128× 128 uniform grid.

Table I. Numerical accuracy tests for Poisson problem with the Dirichlet boundary conditions applied
along the domain boundary.

Grids ‖�‖1 r1 ‖�‖2 r2 ‖�‖∞ r∞

32× 32 1:75× 10−5 2:09× 10−5 5:63× 10−5

64× 64 4:15× 10−6 2:08 5:00× 10−6 2:06 1:53× 10−5 1:88
128× 128 9:91× 10−7 2:07 1:20× 10−6 2:06 3:98× 10−6 1:94
256× 256 2:37× 10−7 2:06 2:90× 10−7 2:05 1:04× 10−6 1:94

increasing resolution. For each grid size, the norm of the error ‖�‖ in the solution is calculated
using the di�erence between the numerical solution and the exact (or, known) solution given
by Equation (53). Table I summarizes the variation of the error with increasing grid resolution,
together with the order of accuracy of the solution determined using Equation (51). From
Table I, we can see that the numerical accuracy is the second order for all the norms shown
(i.e. L1-norm, L2-norm, and L∞-norm).
We can also analyse the e�ectiveness of the ACM algorithm in reducing the residual for

this problem. Figure 10 plots the L∞-norm of the residual,

‖L(�m)− RHS‖∞

against the iteration number, m, for a calculation on a series of uniform grids of di�erent
sizes. In each case, the solution � is initialized to zero. The ACM algorithm reduces the
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Figure 10. Variation of the residual for Poisson problem with the Dirichlet boundary conditions applied
to the domain shown in Figure 9.

residual by about an order of magnitude per iteration. There is a slight decrease in performance
as the grid spacing is reduced, but the reduction rates are still around 5 per ACM iteration
even for the �nest grids shown.

3.2. Test case 2

Test cases 2–6 are taken from Reference [11], for which GFM was used. The �rst reason
for selecting these cases is to demonstrate that our proposed second-order numerical method-
ology can be applied to the Poisson equation with di�erent interface shapes and solution
functions (for example, exponential, logarithmic and parabolic functions). The second reason
is to compare the numerical errors from our proposed method with those from GFM [11].
Consider ∇· (�∇�)=f(x; y) de�ned within the unit square [0; 1]× [0; 1] with the interface

de�ned by the circle (x−0:5)2+(y−0:5)2 =0:2152; where an outward pointing normal vector
is (nxi+nyj). Here, �=2 and f(x; y)=8(x2 +y2−1)e−x2−y2 inside the circular region; �=1
and f(x; y)=0 outside the circular region. The jump conditions are [�]= − e−x

2−y2 and
[��n]= 4(nxx+nyy)e−x

2−y2 along the circular boundary. The corresponding exact solution for
this problem is �(x; y)= e−x

2−y2 in the region inside the circular boundary and �(x; y)=0 in
the region outside the circular boundary. Dirichlet boundary conditions are imposed on the
square domain boundary. Figure 11 shows the numerical solution with 64 grid points in each
direction and Table II summarizes the results of the numerical accuracy tests. In Table II,
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Figure 11. The numerical solution of the test case 2 with 64 grid points in each direction.

Table II. Numerical accuracy test for the case 2.

Grids ‖�‖1 r1 ‖�‖2 r2 ‖�‖∞ r∞

32× 32 6:35× 10−5 7:85× 10−5 1:48× 10−4

64× 64 1:66× 10−5 1:98 2:00× 10−5 1:97 3:83× 10−5 1:95
128× 128 4:23× 10−6 1:97 5:16× 10−6 1:95 1:08× 10−5 1:83
256× 256 1:07× 10−6 1:98 1:28× 10−6 2:01 2:34× 10−6 2:20

the various norms of the error (e.g. ‖�‖1, ‖�‖2 and ‖�‖∞) in the solution are calculated based
on the obtained numerical solution and the exact (known) solution. The results of Table II
demonstrate clearly that the proposed numerical method maintains a second-order accuracy as
claimed earlier.
Table III compares ‖�‖2 and ‖�‖∞ obtained on a 64×64 grid using our proposed numerical

methodology with those obtained on an 80 × 80 grid using the methodology described in
Reference [11]. It can be seen that our numerical errors are generally two orders of magnitude
lower than those from Reference [11].
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Table III. Numerical accuracy test for the case 2 in comparison with Reference [11].

Grids ‖�‖2 ‖�‖∞

64× 64 2:00× 10−5 3:83× 10−5

80× 80 [11] 3:0× 10−3 2:0× 10−3
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Figure 12. The numerical solution of the test case 3 with 64 grid points in each direction.

3.3. Test case 3

Consider ��=0 de�ned on a domain of de�nition [−0:5; 0:5]× [−0:5; 0:5] with the interface
de�ned by the circle x2+y2 = 0:2152 and an outward pointing normal vector denoted by (nxi+
nyj). The jump conditions are [�]= 0 and [�n]= (xnx+yny)=0:2152 on the circular boundary.
The corresponding exact solutions are �(x; y)=1 in the interior of the circle and �(x; y)=1+
ln(

√
x2 + y2=0:215) in the region exterior to the circle. Dirichlet boundary conditions are

imposed on the square domain boundary. Figure 12 shows the numerical solution with 64
grid points in each direction. From an examination of the behaviour of ‖�‖1, ‖�‖2 and ‖�‖∞
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Table IV. Numerical accuracy test for the case 3.

Grids ‖�‖1 r1 ‖�‖2 r2 ‖�‖∞ r∞

32× 32 5:00× 10−4 5:03× 10−4 6:54× 10−4

64× 64 1:17× 10−4 2:13 1:18× 10−4 2:09 1:59× 10−5 2.04
128× 128 2:77× 10−5 2.08 2:77× 10−5 2.09 3:69× 10−5 2.11
256× 256 6:97× 10−6 1:99 7:00× 10−6 1.98 1:06× 10−5 1.80
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Figure 13. The numerical solution of the test case 4 with 64 grid points in each direction.

as a function of the grid resolution, it can be seen from Table IV that our proposed numerical
method is second-order accurate.

3.4. Test case 4

Consider ��=0 on the domain of de�nition [−0:5; 0:5]×[−0:5; 0:5] with the interface de�ned
by the circle x2 + y2 = 0:2152 and an outward pointing normal vector denoted by (nxi+ nyj).
The jump conditions are [�]=y2−x2 and [�n]= 2(yny−xnx) along the circular boundary. The
corresponding exact solutions are �(x; y)= x2 − y2 in the region inside the circular boundary
and �(x; y)=0 in the region outside the circular boundary. Dirichlet boundary conditions are
imposed on the square domain boundary. Figure 13 shows the numerical solution with 64 grid
points in each direction. Table V demonstrates that second-order accuracy in the numerical
solution has been achieved using our proposed methodology.
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Table V. Numerical accuracy test for the case 4.

Grids ‖�‖1 r1 ‖�‖2 r2 ‖�‖∞ r∞

32× 32 5:59× 10−5 8:78× 10−5 3:45× 10−4

64× 64 1:47× 10−5 1.93 2:34× 10−5 1.91 9:06× 10−5 1.93
128× 128 3:61× 10−6 2.02 5:86× 10−6 2.00 2:59× 10−5 1.81
256× 256 8:96× 10−7 2.01 1:46× 10−6 2.00 7:54× 10−6 1.78
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Figure 14. The numerical solution of the test case 5 with 64 grid points in each direction.

3.5. Test case 5

Consider ∇ · (�∇�)=f(x; y) on the domain of de�nition [−0:5; 0:5] × [−0:5; 0:5]. The star-
shaped interface is de�ned in polar coordinates as r(�)=0:32 + 0:05 cos(6�) with �∈ [0; 2�].
The unit normal vector (nxi + nyj) is assumed to point from the interior to the exterior
region. Here, �=1 and f(x; y)=4 in the interior of the star-shaped region; �=10 and
f(x; y)=16(x2 + y2) in the exterior of the star-shaped region. The jump conditions are
[�]= 0:1(x2+y2)2−0:01 ln(2

√
x2 + y2)−(x2+y2) and [��n]= (4(x2+y2)−0:1(x2+y2)−1−2)

(xnx+yny) along the star-shaped curve. The corresponding exact solutions are �(x; y)= x2+y2

in the region inside the star-shaped curve and �(x; y)=0:1(x2 + y2)2 − 0:01 ln(2
√
x2 + y2)

in the region outside the star-shaped curve. Dirichlet boundary conditions are imposed on
the square domain boundary. Figure 14 shows the numerical solution with 64 grid points in
each direction. Consistent with the previous examples, a perusal of Table VI shows that our
proposed method is second-order accurate.

3.6. Test case 6

Consider ∇ · (�∇�)=f(x; y) with a domain of de�nition [−0:5; 0:5] × [−0:5; 0:5]. The star-
shaped interface is de�ned in polar coordinates as r(�)=0:32 + 0:05 cos(6�) with �∈ [0; 2�].
The unit normal vector (nxi + nyj) is assumed to point from the interior to the exterior
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Table VI. Numerical accuracy test for the case 5.

Grids ‖�‖1 r1 ‖�‖2 r2 ‖�‖∞ r∞

32× 32 1:85× 10−4 1:89× 10−4 2:21× 10−4

64× 64 5:35× 10−5 1:79 5:40× 10−5 1.81 6:03× 10−5 1.87
128× 128 1:24× 10−5 2:11 1:25× 10−5 2.11 1:46× 10−5 2.05
256× 256 3:19× 10−6 1.96 3:20× 10−6 1.97 3:61× 10−6 2.01
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Figure 15. The numerical solution of the test case 6 with 64 grid points in each direction.

region. Here, �=1 and f(x; y)= ex(2 + y2 + 2 sin y + 4x sin y) in the region interior to the
star-shaped curve; �=10 and f(x; y)= − 40 in the region exterior to the star-shaped curve.
The jump conditions are [�]= − (x2 + y2) − ex(x2 sin y + y2) and [��n]= (−20x − ex(x2 +
2x) sin y + y2)nx + (−20y − ex(x2 cosy + 2y))ny along the star-shaped boundary. For this
test case, the exact solution is �(x; y)= ex(x2 sin y + y2) inside the star-shaped region and
�(x; y)= −(x2+y2) outside the star-shaped region. Dirichlet boundary conditions are imposed
on the square domain boundary. Figure 15 shows the numerical solution with 64 grid points in
each direction. Table VII demonstrates that the numerical solution obtained using our proposed
numerical methodology is second-order accurate.
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Table VII. Numerical accuracy test for the case 6.

Grids ‖�‖1 r1 ‖�‖2 r2 ‖�‖∞ r∞

32× 32 4:24× 10−4 4:25× 10−4 5:68× 10−4

64× 64 1:36× 10−4 1.63 1:37× 10−4 1.63 1:88× 10−4 1.60
128× 128 2:78× 10−5 2.29 2:80× 10−5 2.29 4:15× 10−5 2.18
256× 256 7:49× 10−6 1.89 7:54× 10−6 1.89 1:10× 10−5 1.92

4. CONCLUSIONS

A method has been presented for solving the variable coe�cient Poisson equation on a two-
dimensional domain in the presence of irregular interfaces where both the variable coe�cient
and the solution itself may be discontinuous. The approach involves using piecewise cubic
splines to represent the irregular interface, and applying this representation to calculate the
geometrical information on each cut-cell (e.g. cell volume, areas of cell faces) required for
the discretization of the Poisson equation using the �nite volume method. Although the use
of cubic splines allows us to accurately calculate the curvature of an interface and, hence,
the associated surface tension e�ect for free-surface problems [13], the proposed method is
currently limited to two-dimensional problems.
The gradient �uxes of � on the cut-cell faces and the interface faces at the face mid-

points are evaluated using a second-order accurate scheme. The resulting discretization of
the Poisson equation on an irregular (complex) domain is rearranged in such a way that
the computational stencil on the implicit part of the discretized equation is identical to that
obtained in a conventional discretization of the Poisson equation over a regular (simple)
domain plus additional explicit correction terms for cells involving an immersed interface.
Consequently, an e�cient iterative solver, such as the multigrid method, for the Poisson
equation over a regular domain can be applied to the current discretized equation system for
the irregular domain without any major changes.
Several test cases (for which exact solutions of the Poisson equation are known) have

been used used to test our new methodology for discretization on an irregular domain. A
comparison of the numerical solutions with the exact solutions for these test cases demonstrates
that our new solution methodology is second-order accurate and can keep the interface sharp
as claimed. It is noted that the major di�erences between the present cut-cell approach and
GFM in solving a variable coe�cient Poisson equation with jump conditions are that (1)
the present method does not require ghost cells, and (2) the present method imposes jump
conditions directly (or explicitly) at the interface to secure the second-order accuracy in the
solution.
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